Sunday, April 25, 2010

mobile communications

Abstract
With the advent of the Internet and the plurality and variety of fancy applications it brought with it, the demand for more advanced services on cellular phones is increasingly becoming urgent. Unfortunately, so far the introduction of new enabling technologies did not succeed in boosting new services. The adoption of Internet services has shown to be more difficult due to the difference between the Internet and the mobile telecommunication system. The goal of this paper is to examine the characteristics of the mobile system and to clarify the constraints that are imposed on existing mobile services. The paper will also investigate successively the enabling technologies and the improvements they brought. A variety of data services is offered. GSM users can send and receive data, at rates up to 9600 bps, to users on POTS (Plain Old Telephone Service). A GSM network is composed of several functional entities, whose functions and interfaces are specified.. The GSM network can be divided into three broad parts. The Base Station Subsystem controls the radio link with the Mobile Station. The Network Subsystem, the main part of which is the Mobile services Switching Center (MSC), performs the switching of calls between the mobile users, and between mobile and fixed network users. The MSC also handles the mobility management operations. Not shown is the Operations and Maintenance Center, which oversees the proper operation and setup of the network. The Mobile Station and the Base Station Subsystem communicate across the Um interface, also known as the air interface or radio link. The Base Station Subsystem communicates with the Mobile services Switching Center across the A interface. GSM is also the first system to make extensive use of the Intelligent Networking concept, in in which services like 800 numbers are concentrated and handled from a few centralized service centers, instead of being distributed over every switch. GSM is a very complex standard, but that is probably the price that must be paid to achieve the level of integrated service and quality offered while subject to the rather severe restrictions imposed by the radio environment.

1. Introduction to GSM
During the early 1980s, analog cellular telephone systems were experiencing rapid growth in Europe, particularly in Scandinavia and the United Kingdom, but also in France and Germany. Each country developed its own system, which was incompatible with everyone else's in equipment and operation. This was an undesirable situation, because not only was the mobile equipment limited to operation within national boundaries, which in a unified Europe were increasingly unimportant, but there was also a very limited market for each type of equipment, so economies of scale and the subsequent savings could`1 not be realized.
The Europeans realized this early on, and in 1982 the Conference of European Posts and Telegraphs (CEPT) formed a study group called the Group special Mobile (GSM) to study and develop a pan-European public land mobile system. The proposed system had to meet certain criteria like good subjective speech quality, low terminal and service cost ,support for international roaming, ability to support handheld terminals, support for range of new services and facilities, spectral efficiency and ISDN compatibility GSM systems exist on every continent, and the acronym GSM now aptly stands for Global System for Mobile communications.
2.Services provided by GSM
From the beginning, the planners of GSM wanted ISDN compatibility in terms of the services offered and the control signaling used. However, radio transmission limitations, in terms of bandwidth and cost, do not allow the standard ISDN B-channel bit rate of 64 kbps to be practically achieved.
Using the ITU-T definitions, telecommunication services can be divided into bearer services, teleservices, and supplementary services. The most basic teleservice supported by GSM is telephony. As with all other communications, speech is digitally encoded and transmitted through the GSM network as a digital stream. There is also an emergency service, where the nearest emergency-service provider is notified by dialing three digits.
A variety of data services is offered. GSM users can send and receive data, at rates up to 9600 bps, to users on POTS (Plain Old Telephone Service), Other data services include Group 3 facsimile, as described in ITU-T recommendation T.30, which is supported by use of an appropriate fax adaptor. A unique feature of GSM, not found in older analog systems, is the Short Message Service (SMS). SMS is a bi-directional service for short alphanumeric (up to 160 bytes) messages. Messages are transported in a store-and-forward fashion.

3.Architecture of the GSM network
A GSM network is composed of several functional entities, whose functions and interfaces are specified. Figure 1 shows the layout of a generic GSM network. The GSM network can be divided into three broad parts. The Base Station Subsystem controls the radio link with the Mobile Station. The Network Subsystem, the main part of which is the Mobile services Switching Center (MSC), performs the switching of calls between the mobile users, and between mobile and fixed network users. The MSC also handles the mobility management operations. Not shown is the Operations and Maintenance Center, which oversees the proper operation and setup of the network. The Mobile Station and the Base Station Subsystem communicate across the Um interface, also known as the air interface or radio link. The Base Station Subsystem communicates with the Mobile services Switching Center across the A interface.

3.1 Mobile Station
The mobile station (MS) consists of the mobile equipment (the terminal) and a smart card called the Subscriber Identity Module (SIM). The SIM provides personal mobility, so that the user can have access to subscribed services irrespective of a specific terminal. By inserting the SIM card into another GSM terminal, the user is able to receive calls at that terminal, make calls from that terminal, and receive other subscribed services.
3.2 Base Station Subsystem
The Base Station Subsystem is composed of two parts, the Base Transceiver Station (BTS) and the Base Station Controller (BSC). These communicate across the standardized Abis interface, allowing (as in the rest of the system) operation between components made by different suppliers.
The Base Transceiver Station houses the radio tranceivers that define a cell and handles the radio-link protocols with the Mobile Station. In a large urban area, there will potentially be a large number of BTSs deployed, thus the requirements for a BTS are ruggedness, reliability, portability, and minimum cost.
3.3 Network Subsystem
The central component of the Network Subsystem is the Mobile services Switching Center (MSC). It acts like a normal switching node of the PSTN or ISDN, and additionally provides all the functionality needed to handle a mobile subscriber, such as registration, authentication, location updating, handovers, and call routing to a roaming subscriber. These services are provided in conjuction with several functional entities, which together form the Network Subsystem.
The Home Location Register (HLR) and Visitor Location Register (VLR), together with the MSC, provide the call-routing and roaming capabilities of GSM. The HLR contains all the administrative information of each subscriber registered in the corresponding GSM network, along with the current location of the mobile. The location of the mobile is typically in the form of the signalling address of the VLR associated with the mobile station.The Visitor Location Register (VLR) contains selected administrative information from the HLR, necessary for call control and provision of the subscribed services, for each mobile currently located in the geographical area controlled by the VLR. Although each functional entity can be implemented as an independent unit, all manufacturers of switching equipment to date implement the VLR together with the MSC, so that the geographical area controlled by the MSC corresponds to that controlled by the VLR, thus simplifying the signalling required. Note that the MSC contains no information about particular mobile stations --- this information is stored in the location registers.

4.Radio link aspects
The International Telecommunication Union (ITU), which manages the international allocation of radio spectrum (among many other functions), allocated the bands 890-915 MHz for the uplink (mobile station to base station) and 935-960 MHz for the downlink (base station to mobile station) for mobile networks. Since this range was already being used in the early 1980s by the analog systems of the day, the CEPT had the foresight to reserve the top 10 MHz of each band for the GSM network that was still being developed. Eventually, GSM will be allocated the entire 2x25 MHz bandwidth.
4.1 Multiple access and channel structure
Since radio spectrum is a limited resource shared by all users, a method must be devised to divide up the bandwidth among as many users as possible. The method chosen by GSM is a combination of Time- and Frequency-Division Multiple Access (TDMA/FDMA). The FDMA part involves the division by frequency of the (maximum) 25 MHz bandwidth into 124 carrier frequencies spaced 200 kHz apart. One or more carrier frequencies are assigned to each base station. Each of these carrier frequencies is then divided in time, using a TDMA scheme. The fundamental unit of time in this TDMA scheme is called a burst period and it lasts 15/26 ms (or approx. 0.577 ms). Eight burst periods are grouped into a TDMA frame (120/26 ms, or approx. 4.615 ms), which forms the basic unit for the definition of logical channels.
4.1.1. Control channels
Common channels can be accessed both by idle mode and dedicated mode mobiles. The common channels are used by idle mode mobiles to exchange the signalling information required to change to dedicated mode. Mobiles already in dedicated mode monitor the surrounding base stations for handover and other information. The common channels are defined within a 51-frame multiframe, so that dedicated mobiles using the 26-frame multiframe TCH structure can still monitor control channels. The common channels include:
Broadcast Control Channel (BCCH) :- Continually broadcasts, on the downlink, information including base station identity, frequency allocations, and frequency-hopping sequences.
Frequency Correction Channel (FCCH) and Synchronization Channel (SCH) :- Used to synchronize the mobile to the time slot structure of a cell by defining the boundaries of burst periods, and the time slot numbering. Every cell in a GSM network broadcasts exactly one FCCH and one SCH, which are by definition on time slot number 0 (within a TDMA frame).
Random Access Channel (RACH) :- Mobile uses Slotted Aloha channel to request access network. Paging Channel (PCH) :- Used to alert the mobile station of an incoming call.
Access Grant Channel (AGCH) :- Used to allocate an SDCCH to a mobile for signalling (in order to obtain a dedicated channel), following a request on the RACH.
4.2.Speech coding
GSM is a digital system, so speech that is inherently analog, has to be digitalized. The method employed by ISDN, and by current telephone systems for multiplexing voice lines over high speed trunks and optical fiber lines, is Pulse Coded Modulation (PCM). The output stream from PCM is 64 kbps, too high a rate to be feasible over a radio link. The 64 kbps signal, although simple to implement, contains much redundancy. The GSM group studied several speech coding algorithms on the basis of subjective speech quality and complexity before arriving at the choice of a Regular Pulse Excited -- Linear Predictive Coder (RPE--LPC) with a Long Term Predictor loop. Basically, information from previous samples, which does not change very quickly, is used to predict the current sample. The coefficients of the linear combination of the previous samples, plus an encoded form of the residual, the difference between the predicted and actual sample, represent the signal. This is the so-called Full-Rate speech coding. Recently, an Enhanced Full-Rate (EFR) speech coding algorithm has been implemented by some North American GSM1900 operators. This is said to provide improved speech quality using the existing 13 kbps bit rate.
4.3. Channel coding and modulation
Because of natural and man-made electromagnetic interference, the encoded speech or data signal transmitted over the radio interface must be protected from errors. GSM uses convolutional encoding and block interleaving to achieve this protection. The exact algorithms used differ for speech and for different data rates. The method used for speech blocks will be described below. Recall that the speech code produces a 260-bit block for every 20 ms speech sample. From subjective testing, it was found that some bits of this block were more important for perceived speech quality than others. The bits are thus divided into three classes: Class Ia 50 bits - most sensitive to bit errors, Class Ib 132 bits - moderately sensitive to bit errors and Class II 78 bits - least sensitive to bit errors
Class Ia bits have a 3 bit Cyclic Redundancy Code added for error detection. If an error is detected, the frame is judged too damaged to be comprehensible and it is discarded. It is replaced by a slightly attenuated version of the previous correctly received frame .Each input bit is encoded as two output bits, based on a combination of the previous 4 input bits. The convolutional encoder thus outputs 378 bits, to which are added the 78 remaining Class II bits, which are unprotected. Thus every 20 ms speech sample is encoded as 456 bits, giving a bit rate of 22.8 kbps. To further protect against the burst errors common to the radio interface, each sample is interleaved..
4.4. Multipath equalization
At the 900 MHz range, radio waves bounce off everything - buildings, hills, cars, airplanes, etc. Thus many reflected signals, each with a different phase, can reach an antenna. Equalization is used to extract the desired signal from the unwanted reflections. It works by finding out how a known transmitted signal is modified by multipath fading, and constructing an inverse filter to extract the rest of the desired signal. This known signal is the 26-bit training sequence transmitted in the middle of every time-slot burst. The actual implementation of the equalizer is not specified in the GSM specifications.
4.5. Frequency hopping
The mobile station already has to be frequency agile, meaning it can move between a transmit, receive, and monitor time slot within one TDMA frame, which normally are on different frequencies. GSM makes use of this inherent frequency agility to implement slow frequency hopping, where the mobile and BTS transmit each TDMA frame on a different carrier frequency. The frequency hopping algorithm is broadcast on the Broadcast Control Channel. Since multipath fading is dependent on carrier frequency, slow frequency hopping helps alleviate the problem. In addition, co-channel interference is in effect randomized.
5.Authentication and security
Since the radio medium can be accessed by anyone, authentication of users to prove that they are who they claim to be, is a very important element of a mobile network. Authentication involves two functional entities, the SIM card in the mobile, and the Authentication Center (AuC). Each subscriber is given a secret key, one copy of which is stored in the SIM card and the other in the AuC. During authentication, the AuC generates a random number that it sends to the mobile. Both the mobile and the AuC then use the random number, in conjuction with the subscriber's secret key and a ciphering algorithm called A3, to generate a signed response (SRES) that is sent back to the AuC. If the number sent by the mobile is the same as the one calculated by the AuC, the subscriber is authenticated.
5.1Communication management
The Communication Management layer (CM) is responsible for Call Control (CC), supplementary service management, and short message service management. Other functions of the CC sublayer include call establishment, selection of the type of service and call release.
5.1.1.Call routing
A GSM user can roam internationally. The directory number dialed to reach a mobile subscriber is called the Mobile Subscriber ISDN (MSISDN), which is defined by the E.164 numbering plan.

A number in E.164 numbering plan includes a country code and a National Destination Code, which identifies the subscriber's operator. The first few digits of the remaining subscriber number may identify the subscriber's HLR within the home PLMN.

6.Conclusion and comments
we believe, however, that we gave the general flavor of GSM and the philosophy behind its design. It was a monumental task that the original GSM committee undertook, and one that has proven a success, showing that international cooperation on such projects between academia, industry, and government can succeed. It is a standard that ensures interoperability without stifling competition and innovation among suppliers, to the benefit of the public both in terms of cost and service quality. For example, by using Very Large Scale Integration (VLSI) microprocessor technology, many functions of the mobile station can be built on one chipset, resulting in lighter, more compact, and more energy-efficient terminals.
Telecommunications are evolving towards personal communication networks, whose objective can be stated as the availability of all communication services anytime, anywhere, to anyone, by a single identity number and a pocketable communication terminal. Having a multitude of incompatible systems throughout the world moves us farther away from this ideal. The economies of scale created by a unified system are enough to justify its implementation, not to mention the convenience to people of carrying just one communication terminal anywhere they go, regardless of national boundaries.
Another point where GSM has shown its commitment to openness, standards and interoperability is the compatibility with the Integrated Services Digital Network (ISDN) that is evolving in most industrialized countries and Europe in particular (the so-called Euro-ISDN). GSM is also the first system to make extensive use of the Intelligent Networking concept, in in which services like 800 numbers are concentrated and handled from a few centralized service centers, instead of being distributed over every switch in the country. This is the concept behind the use of the various registers such as the HLR. In addition, the signaling between these functional entities uses Signaling System Number 7, an international standard already deployed in many countries and specified as the backbone signaling network for ISDN.
GSM is a very complex standard, but that is probably the price that must be paid to achieve the level of integrated service and quality offered while subject to the rather severe restrictions imposed by the radio environment.

1 comment:

  1. Hello everyone..

    I'm selling fresh leads. Details in leads are:

    Full name
    SSN
    DOB
    Phone Numbers
    Address
    City
    State
    Zip
    Residential Status
    Account Number
    DL number
    Emails

    All leads are genuine, fresh & generated by spaming, I Will provide you samples for checking if u want.

    Dealing in almost all types of leads.

    SSN Leads
    Dead Fullz
    Premium Leads
    Mortgage Leads
    Bank Account Leads
    Employee Leads
    Business Leads
    Home Owners Leads
    DL Leads
    Emails Leads
    Phone Numbers Leads

    Each lead will b cost $1.

    Also cvv Fullz available track 1 & track 2 with pin.

    Interested person contact, scammers stay away, sampling is free of cost.

    email > leads.sellers1212@gmail.com
    Whatsapp > +923172721122
    Telegram > @leadsupplier
    ICQ > 752822040

    ReplyDelete